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Abstract— The hard-core model has received much attention
in the past couple of decades as a lattice gas model with hard
constraints in statistical physics, a multicast model of calls in com-
munication networks, and as a weighted independent set problem
in combinatorics, probability and theoretical computer science.

In this model, each independent set I in a graph G is weighted
proportionally to λ|I|, for a positive real parameter λ. For large λ,
computing the partition function (namely, the normalizing constant
which makes the weighting a probability distribution on a finite
graph) on graphs of maximum degree ∆ ≥ 3, is a well known
computationally challenging problem. More concretely, let λc(T∆)
denote the critical value for the so-called uniqueness threshold
of the hard-core model on the infinite ∆-regular tree; recent
breakthrough results of Dror Weitz (2006) and Allan Sly (2010)
have identified λc(T∆) as a threshold where the hardness of
estimating the above partition function undergoes a computational
transition.

We focus on the well-studied particular case of the square
lattice Z2, and provide a new lower bound for the uniqueness
threshold, in particular taking it well above λc(T4). Our technique
refines and builds on the tree of self-avoiding walks approach of
Weitz, resulting in a new technical sufficient criterion (of wider
applicability) for establishing strong spatial mixing (and hence
uniqueness) for the hard-core model. Our new criterion achieves
better bounds on strong spatial mixing when the graph has extra
structure, improving upon what can be achieved by just using the
maximum degree. Applying our technique to Z2 we prove that
strong spatial mixing holds for all λ < 2.3882, improving upon
the work of Weitz that held for λ < 27/16 = 1.6875. Our results
imply a fully-polynomial deterministic approximation algorithm
for estimating the partition function, as well as rapid mixing of
the associated Glauber dynamics to sample from the hard-core
distribution.

1. INTRODUCTION

In this paper we study phase transitions for sampling
weighted independent sets (weighted by an activity λ > 0)
of the 2-dimensional integer lattice Z2. In statistical physics
terminology, we study the hard-core lattice gas model ([6],
[13]), which is a simple model of a gas whose particles have
non-negligible size (thus preventing them from occupying
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neighboring sites), with activity λ ∈ R+ corresponding
to the so-called fugacity of the gas. More formally, for a
finite graph G = (V,E), let Ω = Ω(G) denote the set of
independent sets of G. Given an independent set σ ∈ Ω,
its weight is defined as w(σ) = λ|σ| and v ∈ V is said
to be occupied under σ if v ∈ σ. The associated Gibbs
(or Boltzmann) distribution µ = µG,λ is defined on Ω as
µ(σ) = w(σ)/Z, where Z = Z(G,λ) =

∑
η∈Ω w(η) is

commonly referred to as the partition function.

Recall that Valiant [32] showed that exactly computing
the number of independent sets is #P-complete, even when
restricted to 3-regular graphs (see Greenhill [16]). Hence, we
focus our attention on approximation algorithms for estimat-
ing the number, or more generally, the partition function. It
is well known [17] that the problem of approximating the
partition function Z and that of sampling from a distribution
that is close to the Gibbs distribution µ, are polynomial-time
reducible to each other (see also [30]).

The fundamental notion of a phase transition for a sta-
tistical mechanics model on an infinite graph addresses the
critical point at which the model starts to exhibit a certain
long-range dependence, as a system parameter is varied.
In particular, the so-called critical inverse temperature βc
for the Ising or the Potts model, and the critical activity
λc for the hard-core lattice gas model, are prime examples
where the system undergoes a transition from uniqueness to
multiplicity of the infinite-volume Gibbs measures.

Phase transition in the hard-core model is also intimately
related to the computational complexity of estimating the
partition function Z. Recently, a remarkable connection
was established between the computational complexity of
approximating the partition function for graphs of maximum
degree ∆ and the phase transition λc(T∆) for the infinite
regular tree T∆ of degree ∆. On the positive side, Weitz [33]
showed a deterministic fully-polynomial time approximation
algorithm (FPAS) for approximating the partition function
for any graph with maximum degree ∆, when λ < λc(T∆)
and ∆ is constant. On the other side, Sly [29] recently
showed that for every ∆ ≥ 3, it is NP-hard (unless NP=RP)
to approximate the partition function for graphs of maximum
degree ∆, when λc(T∆) < λ < λc(T∆) + ε∆, for some
function ε∆ > 0. More recently, Galanis et al. [12] improved
the range of λ in Sly’s inapproximability result, extending
it to all λ > λc(T∆) for the cases ∆ = 3 and ∆ ≥ 6.



1.1. Prior history and current work

Our work builds upon Weitz’s work to get improved
results for specific graphs of interest. We focus our attention
on what is arguably the simplest, not yet well-understood,
case of interest namely the square grid, or the 2-dimensional
integer lattice Z2. Empirical evidence suggests that the
critical point λc(Z2) ≈ 3.796 [13], [3], [25], but rigorous
results are significantly far from this conjectured point. The
possibility of there being multiple such λc is not ruled out,
although no one believes that this is the case.

From below, van den Berg and Steif [6] used a disagree-
ment percolation argument to prove λc(Z2) > pc

1−pc where
pc is the critical probability for site percolation on Z2. Ap-
plying the best known lower bound on pc > 0.556 for Z2 by
van den Berg and Ermakov [5] implies λc(Z2) > 1.252 . . . .
Prior to that work, an alternative approach aimed at estab-
lishing the Dobrushin-Shlosman criterion [10], yielded, via
computer-assisted proofs, λc(Z2) > 1.185 by Radulescu and
Styer [27], and λc(Z2) > 1.508 by Radulescu [26].

These results were improved upon by Weitz [33] who
showed that λc(Z2) ≥ λc(T4) = 27/16 = 1.6875, where
T∆ is the infinite, complete, regular tree of degree ∆.
For the upper bound, a classical Peierls’ type argument
implies λc(Z2) = O(1) [9]. (A related result of Randall [28]
showing slow mixing of the Glauber dynamics for λ > 8.066
gives hope for a better upper bound on λc(Z2).) The regular
tree T∆ is one of the only examples (that we know of) where
the critical point is known exactly, and in this case, Kelly
[18] showed that λc(T∆) = (∆− 1)∆−1/(∆− 2)∆.

In this work we present a new general approach which,
for the case of the hard-core model on Z2, improves the
lower bound to λc(Z2) > 2.3882. There are various algo-
rithmic implications for finite subgraphs of the Z2 when
λ < 2.3882. Our results imply that Weitz’s deterministic
FPAS is also valid on subgraphs of Z2 for the same range
of λ. Thanks to the existing literature on general spin
systems ([21], [22], [8], [11]), our results also imply that
the Glauber dynamics has O(n log n) mixing time for any
finite subregion G = (V,E) of Z2 when λ < 2.3882, where
n = |V |. Recall that the Glauber dynamics is a simple
Markov chain that updates the configuration at a randomly
chosen vertex in each step, see [19] for an introduction to
the Glauber dynamics. The stationary distribution of this
chain is the Gibbs distribution. Hence, it is of interest as an
algorithmic technique to randomly sample from the Gibbs
distribution, and also as a model of how physical systems
reach equilibrium. The mixing time is the number of steps
(from the worst initial configuration) until the distribution
is guaranteed to be within variation distance ≤ 1/4 of the
stationary distribution.

As in Weitz’s work, our approach can be used for other
2-spin systems, such as the Ising model (see the full version
of this paper [36] for more details). As will be evident from

the following high-level idea of our approach, it can be
applied to other graphs of interest. Our work also provides
an arguably simpler way to derive the main technical result
of Weitz showing that any graph with maximum degree ∆
has strong spatial mixing (SSM) when λ < λc(T∆).

To underline the difficulty in estimating bounds on λc, we
remark that the existence of a (unique) critical activity λc
remains conjectural and an open problem for Zd, for d ≥ 2.
In contrast, for the Ising model, the critical inverse temper-
ature βc(Z2) has been known since 1944 [23]; interestingly,
the corresponding critical point for the q-state Potts model
(for q ≥ 2) has only recently been established (by Beffara
and Duminil-Copin [4]) to be βc(q) = log(1 +

√
q), settling

a long-standing open problem. The lack of monotonicity in
λ in the hard-core model poses a serious challenge in estab-
lishing such a sharp result for this model. In fact, Brightwell
et al. [7] showed that in general such a monotonicity need
not hold, by providing an example with a non-regular tree.

2. TECHNICAL PRELIMINARIES AND PROOF APPROACH

Before presenting our approach, it is useful to review
briefly the uniqueness/non-uniqueness phase transition, and
introduce associated notions of decay of spatial correlation,
known as weak and strong spatial mixing properties. Much
of the below discussion is simplified for the case of the
hard-core model on Z2, wherein one utilizes certain induced
monotonicity (given by the bipartite property) in the model
and the amenability of the graph.

2.1. Uniqueness, Weak and Strong Spatial Mixing

Let BL denote the finite graph corresponding to a
box of side-length 2L + 1 centered around the ori-
gin in Z2. Thus, BL = (V,E), where V =
(i, j) ∈ Z2 : −2L− 1 ≤ i, j ≤ 2L+ 1 with edges between
pairs of vertices at L1 distance (or Manhattan distance) equal
to one. Since this is a bipartite graph, we may fix one such
partition V = even ∪ odd – for example, it is standard
to consider the set of vertices at an even distance from the
origin as the even set. The boundary of BL are those vertices
v = (v1, v2) ∈ V where |vi| = 2L + 1 for i = 1 or i = 2.
The hard-core model on bipartite graphs is a monotone
system (e.g., see [11]), which for the current discussion
implies that we only have to consider two assignments to
the boundary: all even vertices or all odd vertices on the
boundary are occupied. Let αeven

L,r (αodd
L,r ) denote the marginal

probability that the origin r is unoccupied given the even
(odd, respectively) boundary. Then to establish uniqueness
of the Gibbs measures, we need that:

lim
L→∞

|αeven
L,r − αodd

L,r | = 0.

We are interested in the critical point λc for the transition
between uniqueness and non-uniqueness. A standard way to
establish uniqueness is by proving one of the spatial mixing
properties introduced next.



Let G = (V,E) be a (finite) graph. For S ⊂ V , a
configuration ρ on S specifies a subset of S as occupied
and the remainder as unoccupied. Let µρ = µρG denote the
Gibbs distribution conditional on configuration ρ to S. For
v ∈ V , let αρv = αρG,v denote the marginal probability that
v is unoccupied in µρ.

The first spatial mixing property is Weak Spatial Mixing
(WSM). Here we consider a pair of boundary configurations
on a subset S and consider the “influence” on the marginal
probability that a vertex v is unoccupied. WSM says that
the influence on v decays exponentially in the distance of S
from v.

Definition 1 (Weak Spatial Mixing): For the hard-core
model at activity λ, for finite graph G = (V,E), WSM holds
with rate γ ∈ (0, 1) if for every v ∈ V , every S ⊂ V , and
every two configurations ρ,η on S,

|αρv − αηv | ≤ γdist(v,T )

where dist(v, S) is the graph distance (i.e., length of the
shortest path) between v and (the nearest point in) the subset
S.

The second property of interest is Strong Spatial Mixing
(SSM). The intuition is that if a pair of boundary configura-
tions on a subset S agree at some vertices in S then those
vertices “encourage” v to agree. Therefore, SSM says that
the influence on v decays exponentially in the distance of v
from the subset of vertices where the pair of configurations
differ.

Definition 2 (Strong Spatial Mixing): For the hard-core
model at activity λ, for finite graph G = (V,E), SSM holds
with rate γ ∈ (0, 1) if for every v ∈ V , every S ⊂ V , every
S′ ⊂ S, and every two configurations ρ,η on S where
ρ(S \ S′) = η(S \ S′),

|αρv − αηv | ≤ γdist(v,S′).

Note that since dist(v, T ) ≤ dist(v, T \ S), SSM implies
WSM for the same rate. Moreover, it is a standard fact that
such an exponential decay in finite boxes (say), in Zd, im-
plies uniqueness of the corresponding infinite volume Gibbs
measure on Zd, see Georgii [14] for an introduction to the
theory of infinite-volume Gibbs measures. We can specialize
the above notions of WSM and SSM to a particular vertex
v, in which case we say that WSM or SSM holds at v. If
the graph is a rooted tree, we will always assume that the
notions of WSM and SSM are considered at the root.

For the hard-core model on a graph G = (V,E), for a
subset of vertices S and a fixed configuration ρ on S, it is
equivalent to consider the subgraph G′ which we obtain for
each v ∈ S that is fixed to be unoccupied we remove v
from G, and for each v ∈ S that is fixed to be occupied we
remove v and its neighbors N(v) from G. In this way we
obtain the following observation which will be useful for
proving SSM holds.

Observation 1: For a graph G = (V,E) and v ∈ V , SSM
holds in G at vertex v iff WSM holds for all subgraphs G′ (of
G) at vertex v. To be precise, by subgraphs we mean graphs
obtained by considering all subgraphs of G and taking the
component containing v.

2.2. Self-Avoiding Walk Tree Representation

Since our work builds on that of Weitz’s, we first describe
the self-avoiding walk (SAW) tree representation introduced
in [33]. Given G = (V,E), we first fix an arbitrary ordering
>w on the neighbors of each vertex w in G. For each v ∈ V ,
the tree Tsaw(G, v) is constructed as follows. Consider the
tree T of self-avoiding walks originating from v, additionally
including the vertices closing a cycle as leaves of the tree.
We then fix such leaves of T to be occupied or unoccupied
in the following manner. If a leaf vertex closes a cycle in G,
say w → v1 → . . . v` → w, then if v1 >w v` we fix this leaf
to be unoccupied, otherwise if v1 <w v` we fix the leaf to
be occupied. Note, if the leaf is fixed to be unoccupied we
simply remove that vertex from the tree. If the leaf is fixed
to be occupied, we remove that leaf and all of its neighbors,
i.e. we remove the parent of that leaf from the tree. The
resulting tree is denoted as Tsaw = Tsaw(G, v). See Figure
1 for an illustration of Tsaw for a particular example.

Weitz [33] proves the following theorem for the hard-core
model, which shows that the marginal distribution at the
root in Tsaw(G, v) is identical to the marginal distribution
for v in G. For a graph G = (V,E), a subset S ⊂ V and
configuration ρ on S, for Tsaw = Tsaw(G, v), let ρ in Tsaw

denote the configuration on S in Tsaw where for w ∈ S
every occurrence of w in Tsaw is assigned according to ρ.

Theorem 1 (SAW Tree Representation, Theorem 3.1 in [33]):
For any graph G = (V,E), v ∈ V , λ > 0, and configuration
ρ on S ⊂ V , for T = Tsaw(G, v) the following holds:

αρG,v = αρT,v.

Note, the tree Tsaw(G, v) preserves the distance of vertices
from v in G, which implies the following corollary.

Corollary 2: If SSM holds with rate γ for Tsaw(G, v)
for all v, then SSM holds for G with rate γ.

The reverse implication of Corollary 2 does not hold
since there are configurations on S in Tsaw which are not
necessarily realizable in G. Observe that if G has maximum
degree ∆, any SAW tree of G is a subtree of the regular
tree of degree ∆.

2.3. Our Proof Approach

In summary, Weitz [33] first shows (via Theorem 1) that
to prove SSM holds on a graph G = (V,E), it suffices
to prove SSM holds on the trees Tsaw(G, v), for all v ∈ V .
Weitz then proves that the regular tree T∆ “dominates” every
tree of maximum degree ∆ in the sense that, for all trees
of maximum degree ∆, SSM holds when λ < λc(T∆). We
refine this second part of Weitz’s approach. In particular,
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Figure 1. Example of self-avoiding walk tree Tsaw. The above tree describes Tsaw(G, a) with occupied and unoccupied leaves, while the below one
is the same tree after removing those assigned leaves. At each vertex, we consider the ordering N > E > S > W of its neighbors where N,E, S,W
represent the neighbors in the North, East, South, West directions, respectively.

for graphs with extra structure, such as G = Z2, we bound
Tsaw(Z2) by a tree T ∗ that is much closer to it than the
regular tree T∆. We then establish a criterion that achieves
better bounds on SSM for trees when the trees have extra
structure.

The tree T ∗ will be constructed in a regular manner so
that we can prove properties about it – the construction of
T ∗ is governed by a (progeny) t× t matrix M , whose rows
correspond to t types of vertices, with the entry Mij speci-
fying the number of children of type j that a vertex of type i
begets. We will then show a sufficient condition using entries
of M which implies that SSM holds for T ∗ and for any
subgraph of T ∗, including Tsaw(Z2). The construction of T ∗

is reminiscent of the strategy employed in [1], [24] to upper
bound the connectivity constant of several lattice graphs,
including Z2. The derivation of our sufficient condition has
some inspiration from belief propagation algorithms.

As a byproduct of our proof that our new criterion implies
SSM for T ∗, we get a new (and simpler) proof of the
second part of Weitz’s approach, namely, that for all trees
of maximum degree ∆, SSM holds when λ < λc(T∆).

3. BRANCHING MATRICES AND SSM
As alluded to above, we will utilize more structural

properties of self-avoiding walk trees. To this end, we
consider families of trees which can be recursively generated
by certain rules; we then show that such a general family is
also analytically tractable.

3.1. Definition of Branching Matrices
We say that the matrix M is a t × t branching ma-

trix if every entry Mij is a non-negative integer. We
say the maximum degree of M is ∆ = ∆(M) =
max1≤i≤t

∑
1≤j≤tMij , the maximum row sum. Given a

branching matrix M , we define the following family of
graphs. In essence, it includes a graph G if the self-avoiding
walk trees of G can be generated by M .

Definition 3 (Branching Family): Given a t×t branching
matrix M , F≤M includes trees which can be generated
under the following restrictions:
◦ Each vertex in tree T ∈ F≤M has its type i ∈
{1, . . . , t}.

◦ Each vertex of type i has at most Mij children of type
j.

In addition, we use the notation G = (V,E) ∈ F≤M if
Tsaw(G, v) ∈ F≤M for all v ∈ V .



For example, the family F≤M with M = [∆] includes
the family of trees with maximum branching ∆. On the other

hand, F≤M with M =

(
0 ∆ + 1
0 ∆

)
describes the family

of graphs of maximum degree ∆ + 1, by assigning the root
of tree T ∈ F≤M to be of type 1 and the other vertices
of the tree to be of type 2. Note that if M has maximum
degree ∆, then every G ∈ F≤M also has maximum degree
∆.

In this framework, Weitz’s result establishing SSM for all
graphs of maximum degree ∆ when λ < λc(T∆) can be
stated as establishing SSM with uniform rate for all G ∈
F≤M with M =

(
0 ∆
0 ∆− 1

)
; and we are interested in

establishing its analogy for general M . To this end, we will
use the following notion of SSM for M .

Remark 1: To establish SSM for M , it suffices to prove
that SSM holds with uniform rate for all trees in F≤M due
to Corollary 2. In addition, note that SSM holds for M =(

0 ∆ + 1
0 ∆

)
if and only if it holds for (∆) since the root

of a tree T ∈ F≤M is the only possible vertex of type 1 in
T .

Finally, we define SSM for a branching matrix M .
Definition 4: Given a branching matrix M , we say SSM

holds for M if SSM holds with uniform rate for all G ∈
F≤M .

Remark 2: To establish SSM for M , it suffices to prove
that SSM holds with uniform rate for all trees in F≤M due
to Corollary 2.

3.2. Implications of SSM

We present a new approach for proving SSM for a
branching matrix M . There are multiple consequences of
SSM for M as summarized in the following theorem. We
first state some definitions needed for stating the theorem.

Following Goldberg et al. [15] we use the following
variant of amenability for infinite graphs. Here we consider
an infinite graph G = (V,E). For v ∈ V and a non-
negative integer d, let Bd(v) denote the set of vertices within
distance ≤ d from v, where distance is the length of the
shortest path. For a set of vertices S, the (outer) boundary
and neighborhood amenability are defined, respectively, as:

∂S := {w ∈ V : w /∈ S, and w has a neighbor y ∈ S}

and rd = supv∈V
|∂Bd(v)|
|Bd(v)| . The infinite graph is said to be

neighborhood-amenable if infd rd = 0.
Now we can state the following theorem detailing the

implications of SSM of interest to us.
Theorem 3: For a t×t branching matrixM , if SSM holds

for M then the following hold:
1) For every G ∈ F≤M , SSM holds on G.
2) For every infinite graph G ∈ F≤M , there is a unique

infinite-volume Gibbs measure on G.

3) If M has maximum degree ∆, if t = O(1) and
∆ = O(1), then for every (finite) G ∈ F≤M , Weitz’s
algorithm [33] gives an FPAS for approximating the
partition function Z(G).

4) For every infinite H ∈ F≤M which is neighborhood-
amenable, for every finite subgraph G = (V,E) of H ,
the Glauber dynamics has O(n2) mixing time. More-
over, if H = Zd for constant d, then for every finite
subgraph G = (V,E) of H , the Glauber dynamics has
O(n log n) mixing time.

See [36] for the proof of Theorem 3.

4. ESTABLISHING SSM FOR BRANCHING MATRICES

In this section we present a sufficient condition implying
SSM for the family of trees generated by a branching matrix.
As a consequence of the approach presented in this section
we get a simpler proof of Weitz’s result [33] implying SSM
for all graphs with maximum degree ∆ when λ < λc(T∆).
We then apply the condition presented in this section to Z2

in Section 5.
To show the decay of influence of a boundary condition ρ,

a common strategy is to prove some form of contraction for
the ‘one-step’ iteration given in (1) below. More generally,
we will prove such a contraction for an appropriate set of
‘statistics’ of the unoccupied marginal probability.

A statistic of the univariate parameter x ∈ [a, b] is a
monotone (i.e., strictly increasing or decreasing) function
ϕ : [a, b]→ R. For a t× t branching matrix M we consider
a set of t statistics ϕ1, . . . , ϕt, one for each type. For the
simpler case when M = [∆] and hence t = 1, we have
a single statistic ϕ. Our aim is proving contraction for an
appropriate set of statistics of the probability that the root
of a tree is unoccupied.

We first focus on the case of a single type. Consider a
tree T = (V,E) ∈ F≤M with root r. For v ∈ V , let N(v)
denote the children of v, and let d(v) := |N(v)| the number
of children. Let Tv denote the subtree rooted at v. We will
analyze the unoccupied probability for a vertex v, but v
will always be the root of its subtree. Hence, to simplify
the notation, for a boundary condition ρ on S ⊂ V , let
αρv = αρTv,v .

A straightforward recursive calculation with the partition
function leads to the following relation:

αρv =

{ 1
1+λ if N(v) = ∅

1
1+λ

∏
w∈N(v) α

ρ
w

otherwise.
(1)

Note, the unoccupied probability always lies in the interval
I :=

[
1

1+λ , 1
]
, i.e., for all v, all ρ, αρv ∈ I .

For v ∈ V , let mρv := ϕ(αρv ) be the ‘message’ at vertex



v. The messages satisfy the following recurrence:

mρv = ϕ

(
1

1 + λ
∏
w∈N(v) α

ρ
w

)

= ϕ

(
1

1 + λ
∏
w∈N(v) ϕ

−1(mρw)

)
.

Our aim is to prove uniform contraction of the messages
on all trees T ∈ F≤M . To this end, we will consider a more
general set of messages. Namely, we consider messages
m1, . . . ,m∆ where for every 1 ≤ i ≤ ∆, mi = ϕ(αi)

and αi ∈ I :=
[

1
1+λ , 1

]
. This set of tuples α1, . . . , α∆ ∈ I

contains all of the tuples obtainable on a tree.
For α1, . . . , α∆ ∈ I , let mi = ϕ(αi), 1 ≤ i ≤ ∆, and let

F (m1, . . . ,m∆) := ϕ

(
1

1 + λ
∏∆
i=1 ϕ

−1(mi)

)
.

Ideally, we would like to establish the following con-
traction: there exists a 0 < γ < 1 such that for all
α1, . . . , α∆, α

′
1, . . . , α

′
∆ ∈ I ,

|F (m1, . . . ,m∆)− F (m′1, . . . ,m
′
∆)| ≤ γ max

1≤i≤∆
|mi −m′i|,

where mi = ϕ(αi) and m′i = ϕ(α′i). We will instead show
that the following weaker condition suffices. Namely, that
the desired contraction holds for all |αi − α′i| ≤ ε for some
ε > 0. This is equivalent to the following condition.

Definition 5: Let I =
[

1
1+λ , 1

]
. For the branching matrix

M = [∆], we say that Condition (?) is satisfied if for all
α1, . . . , α∆ ∈ I , by setting mi = ϕ(αi) for 1 ≤ i ≤ ∆, the
following holds:

‖∇F (m1, . . . ,m∆)‖1 =
∆∑
i=1

∣∣∣∣∂F (m1, . . . ,m∆)

∂mi

∣∣∣∣ < 1.

(?)
Let us now consider a natural generalization of the above

notion for a branching matrix with multiple types. Let M be
a t×t branching matrix. For 1 ≤ ` ≤ t, let ∆` =

∑t
k=1M`k

denote the maximum number of children of a vertex of type
`. Once again, consider a tree T = (V,E) ∈ F≤M with root
r. For v ∈ V , let t(v) denote its type. As before, N(v) are
the children of v, d(v) is the number of children of v, and
for a boundary condition ρ on S ⊂ V , αρv is the unoccupied
probability for v in the tree Tv under ρ.

The recursive calculation in (1) for αv in terms of αw, w ∈
N(v), still holds. For the case of multiple types, for v ∈
V , let mρv := ϕt(v)(α

ρ
v ) be the message at vertex v. The

messages satisfy the following recurrence:

mρv = ϕt(v)

(
1

1 + λ
∏
w∈N(v) ϕ

−1
t(w)(m

ρ
w)

)
.

For each type 1 ≤ ` ≤ t, we consider contraction of mes-
sages derived from all α1, . . . , α∆`

∈ I . We need to identify

the type of each these quantities αi in order to determine the
appropriate statistic to apply. The assignment of types needs
to be consistent with the branching matrix M . Hence, let
s` : {1, . . . ,∆`} → {1, . . . , t} be the following assignment.
Let M`,≤0 = 0 and for 1 ≤ i ≤ t, let M`,≤i =

∑i
k=1M`,k.

For 1 ≤ i ≤ t, for M`,≤i−1 < j ≤M`,≤i, let s`(j) = i.
For type 1 ≤ ` ≤ t, for α1, . . . , α∆`

∈ I , set mj =
ϕs`(j)(αj), 1 ≤ j ≤ ∆`, and let

F`(m1, . . . ,m∆`
) := ϕ`

(
1

1 + λ
∏∆`

j=1 ϕ
−1
s`(j)

(mj)

)
.

Note,
mρv = Ft(v)

(
mρw1

, . . . ,mρwd(v)

)
, (2)

where N(v) = {w1, . . . , wd(v)}.1
We generalize Condition (?) to branching matrices with

multiple types by allowing a weighting of the types by
parameters c1, . . . , ct.

Definition 6: Let I =
[

1
1+λ , 1

]
. For a t × t branching

matrix M , we say that Condition (??) is satisfied if there
exist c1, . . . , ct, such that for all 1 ≤ ` ≤ t, for all
α1, . . . , α∆`

∈ I , by setting mi = ϕs`(i)(αi) for 1 ≤ i ≤
∆`, the following holds:

∆∑̀
i=1

cs`(i)

∣∣∣∣∂F` (m1, . . . ,m∆`
)

∂mi

∣∣∣∣ < c`. (??)

The following lemma establishes a sufficient condition so
that SSM holds for M .

Lemma 4: For a t× t branching matrix M , if for every
1 ≤ ` ≤ t, ϕ` is continuously differentiable on the interval
I =

[
1

1+λ , 1
]

and inf
x∈I
|ϕ′`(x)| > 0, and if Condition (?) is

satisfied for t = 1 or Condition (??) is satisfied for t ≥
2 then SSM holds for M , and hence the conclusions of
Theorem 3 follow.

See [36] for the proof of Lemma 4.

4.1. Reproving Weitz’s Result of SSM for Trees

In this section, we aim at finding a good choice of
statistics. First we find such a statistic for the caseM = [∆],
i.e., the case of a single type, which enables us to reprove
Weitz’s result [33] that when λ < λc(T∆) SSM holds for
every tree of maximum degree ∆.

Using Lemma 4 (and the simpler condition (?) for the
case of a single type) we obtain a simpler proof of Weitz’s
result [33] that for every tree T with maximum degree ∆+1
(hence, for every graph G of maximum degree ∆ + 1) and
for all λ < λc(T∆+1) = ∆∆/(∆ − 1)∆+1, SSM holds on
T (and on G).

1Strictly speaking, F` requires ∆` arguments, so for (2) to hold in
the case when d(v) < ∆` we can simply add additional arguments
corresponding to α = 1, which fixes these additional vertices to be
unoccupied (and therefore absent).



Theorem 5: Let ϕ(x) = 1
s log

(
x
s−x

)
where s = ∆+1

∆ .
Then, Condition (?) holds for M = [∆] and λ < λc(T∆+1).
Consequently, SSM and the conclusions of Theorem 3 hold

for M =

(
0 ∆ + 1
0 ∆

)
and λ < λc(T∆+1).

See [36] for the proof of Theorem 5.

4.2. DMS Condition: A Sufficient Criterion

Theorem 5 suggests choosing ϕj(x) = 1
sj

log
(

x
sj−x

)
with appropriate parameters sj for a general branching
matrix M . Under this choice, we obtain the following
condition for SSM.

Definition 7 (DMS Condition): Given a t × t branching
matrix M and λ∗ > 0, for s1, . . . , st > 1 and c =
(c1, . . . , ct) > 0, let D and S be the diagonal matrices
defined as

Djj = sup
α∈[ 1

1+λ∗ ,1]

(1− α)
(

1− θj
(

1−α
λ∗α

)1/∆j
)

sj − α

Sjj = sj ,

where

θj :=

(∏
` c
Mj`

`

)1/∆j∑
` c`s`Mj`/∆j

and ∆j =
∑
`

Mj`.

We say the DMS Condition holds for M and λ∗ if there
exist s1, . . . , st > 1 and c > 0 such that:

(DMS) c < c.

Theorem 6: If the DMS Condition holds forM and λ∗ >
0, then Condition (??) holds with the choice of ϕj(x) =
1
sj

log
(

x
sj−x

)
for all λ ≤ λ∗. Consequently, SSM and the

conclusions of Theorem 3 hold for M and all λ ≤ λ∗.
Proof: First, one can check that

∣∣∣∣ ∂Fj∂mi

∣∣∣∣ =
1− α
sj − α

(sji − αi),

where αi = ϕ−1
ji

(mi) and α = 1

1+λ
∏∆j
i=1 αi

.

Hence, it follows that
∆j∑
i=1

cji

∣∣∣∣ ∂Fj∂mj

∣∣∣∣ =
1− α
sj − α

∆j∑
i=1

cji(sji − αi)

≤ 1− α
sj − α

 ∆j∑
i=1

cjisji −∆j

∆j∏
i=1

cjiαi

1/∆j


by the arithmetic-geometric mean ineq.

=
1− α
sj − α

 ∆j∑
i=1

cjisji −∆j

∆j∏
i=1

cji

1/∆j (
1− α
λα

)1/∆j


=

1− α
sj − α

(
1− θj

(
1− α
λα

)1/∆j
)

∆j∑
i=1

cjisji

by the definition of θj

≤ 1− α
sj − α

(
1− θj

(
1− α
λ∗α

)1/∆j
)

∆j∑
i=1

cjisji

≤ Djj

∑
`

Mj`c`s` by the definition of Djj

< cj by the DMS condition.

which satisfies the desired condition (??) of Lemma 4. This
completes the proof of Theorem 6.

5. APPLICATION TO Z2 IN THE HARD-CORE MODEL

In this section, we show how to apply Theorem 6 and
Theorem 3 to the two-dimensional integer lattice Z2 and
improve the lower bound on λc(Z2), resulting in the fol-
lowing theorem.

Theorem 7: There exists a t × t matrix M such that
Tsaw(Z2) ∈ F≤M and the DMS Condition holds for
λ∗ = 2.3882.

Therefore, the following hold for Z2 for all λ ≤ λ∗:
1) SSM holds on Z2.
2) There is a unique infinite-volume Gibbs measure on

Z2.
3) If M has maximum degree ∆, if t = O(1) and ∆ =

O(1), then for every finite subgraph G of Z2, Weitz’s
algorithm [33] gives an FPAS for approximating the
partition function Z(G).

4) For every finite subgraph G of Z2, the Glauber dy-
namics has O(n log n) mixing time.

We first illustrate our approach by showing that Theorem
7 holds with λ∗ = 1.8801 for a simple choice of M . We
then explain how to extend the approach to higher λ.

The graph Z2 is translation-invariant, hence the tree
Tsaw(Z2, v) is identical for every vertex v ∈ Z2. Fix a
vertex, call it the origin o, and let us consider Tsaw(Z2) =
Tsaw(Z2, ø). Each path from the root of Tsaw(Z2) corre-
sponds to a self-avoiding walk in Z2 starting at the origin.
Any walk on Z2 starting at the origin o can be encoded as



a string over the alphabet {N,E, S,W} corresponding to
North, East, South and West. The tree Tsaw(Z2) contains
such strings, truncated the first time the corresponding walk
completes a cycle. A relaxed notion of such a tree would be
to truncate a walk only when a 4-cycle is completed. Denote
such a tree by T4, and clearly we have that Tsaw(Z2) is a
subtree of T4. Our first idea is to define a branching matrix
N so that T4 ∈ F≤N , and hence Tsaw(Z2) ∈ F≤N .

To avoid cycles of length four, it is enough to track
the last three steps of the walks. Labeling the paths using
{N,E, S,W} as mentioned above, their branching rule is
easily determined. For example, a path labeled NWS is
followed by paths labeled WSW and WSS corresponding
to adding the directions W and S to the path, while adding
the direction E would have resulted in a cycle of length
4. The number of types in the corresponding branching
matrix is ≤ 4 + 42 + 43 ≤ 53. Indeed, we can reduce the
representation of such paths by using isomorphisms between
the generating rules among them. This results in 4 types in
the following branching matrix N :

N =


0 4 0 0
0 1 2 0
0 1 1 1
0 1 1 0

 , (3)

where the type i = 0, ..., 3 of a vertex (walk) in the tree
represents the fact that a continuation with a minimum of
4 − i additional edges are needed to complete a cycle of
length 4.

See Figure 2 for an illustration of this branching matrix
N . One can verify that this branching matrix captures, inter
alia, the self-avoiding walk trees from Z2:

Observation 2: For any finite subgraph G = (V,E) of
Z2 and v ∈ V , Tsaw(G, v) ∈ F≤N .

For this branching matrix, one can check that the
(DMS) condition of Theorem 6 holds with λ∗ =
1.8801, S = Diag(1.040, 1.388, 1.353, 1.255) and c =
(0.266037, 0.100891, 0.100115, 0.0973861). Checking the
DMS Condition for a given choice of parameters would have
been a straightforward task, were it not for the irrationality
of the coefficients Djj . However, one can establish rigorous
upper bounds for Djj , based on concavity of the function (of
α) used in the definition of Djj , in a suitable range of the
parameters. These details will be discussed further below.
As a consequence, we can conclude that Theorem 7 holds
for N and λ∗ = 1.8801.

The primary reason why the branching matrix N im-
proves beyond the tree-threshold of λ < λc(T4) = 27/16 =
1.6875 is that the average branching factor of any T ∈ F≤N
is significantly smaller than that of the regular tree of degree
4.

To obtain a further reduction in the average branching,
we observe that N did not consider the effect of occupying
(or unoccupying) certain leaves as prescribed in Weitz’s

construction. Starting with T4, prune the leaves as is done
in the construction of Tsaw(Z2) from Section 2.2. Denote
the new tree as T ′4. Clearly we still have that Tsaw(Z2) is a
subtree of T ′4.

Let us illustrate the difference between T4 and the pruned
tree T ′4. We first fix an underlying order for the neighbors
of each vertex. To this end, say N > E > S > W and
this prescribes an ordering of the neighbors of each vertex.
Consider a leaf vertex v′ in the tree T4 corresponding to the
vertex v in Z2 and to the path ρ in Z2. Since v′ is a leaf
vertex in T4, ρ must end with a cycle at v, say WNES.
Since v was exited in the West direction at the beginning
of the 4-cycle, and since W < N , the leaf vertex v′ would
be labeled occupied in Weitz’s construction, thus resulting
in the removal of v′ and its parent in the construction of
T ′4. Note, every vertex w′ in T4 of type WNE has a child
v′ of type NES, and consequently w′ (and its subtree)
will be removed from the tree in the pruning process to
construct T ′4. Thus, after removing vertices of type WNE
(and similarly, WSE, SEN and ENW ) from T4, it is still
the case that Tsaw(Z2) is a subtree of the resulting tree (T ′4).
This highlights why T ′4 has a significantly smaller average
branching factor than T4.

We can define a branching matrix M2, with 17 types (as
illustrated in Figure 3), such that T ′4 ∈ F≤M2

, and hence
Tsaw(Z2) ∈ F≤M2

. We can prove the DMS Condition is
satisfied forM2 at λ∗ = 2.1625, as we will describe shortly,
which significantly improves upon our initial bound resulting
from considering T4.

Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9

Type 10 Type 11 Type 12 Type 13 Type 14 Type 15 Type 16 Type 17

Type 1

Figure 3. Shapes that the seventeen types (or labels) represent for M2

where T ′4 ∈ F≤M2
.

A natural direction for improved results is to consider
branching matrices corresponding to avoidance of larger
cycles, while also accounting for the removal of vertices
prescribed by the construction of Weitz. We briefly outline
such an approach for walks avoiding cycles of length at most
4, 6, and 8, respectively. Avoiding cycles of length 2i results
in
∑
j≤2i−1 4j ≤ 52i−1 types, hence the computations be-

come increasingly difficult for larger i. For 8-cycles the task
of finding appropriate parameters to satisfy the conditions of
Theorem 6 is still feasible.

More precisely, we can define branching matrices M i

for i ≥ 2, that (i) represent the structure of trees of walks
avoiding cycles of length ≤ 2i, as well as (ii) account for



Type 2

Type 3

Type 4

d b

c

f

d

i g

e

d

i g

e

g

Type 1

e

d b

e

d f f

c

j

f

j

c

e e

f

a

Figure 2. Assignment of the four types from matrix N defined in (3) to the self-avoiding walk tree Tsaw from Figure 1. In the circled area, we also
draw redundant leaves at vertex j which may appear in the branching rule, but not in Tsaw.

the removal of vertices based on children being labeled
‘occupied.’ One can extend the above construction of M2

for general i > 2 by using types encoded by longer paths
with length at most 2i and ruling out the types that either
contain a cycle of length at most 2i or whose children end up
being labeled occupied. We can make the following general
observation from our construction.

Observation 3: For any finite subgraph G = (V,E) of
Z2 and v ∈ V , Tsaw(G, v) ∈ F≤Mi

for any i ≥ 2.
As mentioned earlier, the matrix M2 constructed above

consists of 17 types. An explicit description of it is shown
in the Online Appendix [34], along with the associated
parameters S and c for which one can check the DMS
Condition for λ∗ = 2.1625; this establishes Theorem 7 for
M2 and λ∗ = 2.1625.

The following table summarizes the threshold λ∗ we
obtain for each M i:

(a, b, c) λ∗

(4, No, 4) 1.8801
(4, Yes, 17) 2.1625

(6, Yes, 132) 2.3335
(8, Yes, 922) 2.3882

In above, a, b and c indicate the max length of avoiding-
cycles, effect of occupations and number of types, respec-
tively.

Note that, one can further improve the bound on λ by
using more types for higher i and hence Theorem 7 on Z2

will hold with the corresponding activity λ∗. For any such
matrix, the verification of the DMS Condition relies on (i)
‘guessing’ appropriate values for the parameters S and c
and (ii) formally verifying that DMS Condition holds for
the chosen S and c. In choosing desirable S and c, we
employed a heuristic random walk algorithm.

To verify that the DMS Condition holds for a given
rational matrix S and vector c is straightforward, provided
we can obtain a rational upper bound for each type j for the

function:

fj(α) =
(1− α)

(
1− θj

(
1−α
λα

)1/∆j
)

sj − α
.

Indeed, due to the concavity of this function for 0 < θj ≤ 1,
sj > 51/50 and λ > 27/16, 2 it is always possible to find a
provable upper bound for fj in such a regime. This can be
done, for example, by describing a suitable ‘envelope’ for
fj consisting of a piecewise linear function of the form:

gj (α) =


B` if α < α`

min
{
b` (α− α`) +B`,

bu (α− αu) +Bu

} if α` < α < αu

Bu if α > αu

where α`, αu are points such that b` > f ′j (α`) > 0, bu <
f ′j (αu) < 0, B` > fj (α`) and Bu > fj (αu). It is clear
for any such function that gj(α) > fj(α), thus we obtain a
provable upper bound for fj using gj .

For every M i in the above table, we provide S and c,
along with appropriate envelopes that lead to upper bounds
D̂jj for the corresponding Djj . Then we verify that the DMS
Condition holds for the given values of λ by replacing Djj

with D̂jj . For i = 2, 3, 4 these values (M , S, c, α` and αu)
are given in the Online Appendix [34].
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2This is a nontrivial algebraic fact. It can be proved by transforming the
second derivatives condition to a set of integer polynomial constraints and
using the “resolve” function in MATHEMATICA for the satisfiability of
the constraints, which is rigorous by the Tarski-Seidenberg Theorem [31]
for the real polynomial systems [35] and the so-called cylindrical algebraic
decomposition [2].
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